Effects of Ru and Ag cap layers on microstructure and magnetic properties of FePt ultrathin films

نویسندگان

  • Mingfeng Liu
  • Tianli Jin
  • Liang Hao
  • Jiangwei Cao
  • Ying Wang
  • Dongping Wu
  • Jianmin Bai
  • Fulin Wei
چکیده

The effects of Ru and Ag cap layers on the microstructure and magnetic properties of the FePt ultrathin films have been investigated. The results indicate that i) The Ag cap layer segregates from the FePt/Ag bilayer, lowers the FePt ordering temperature, promotes the FePt thin films to form island structure, and enhances the coercivity; ii) The Ru cap layer increases the FePt ordering temperature, helps to maintain smooth continuous structure film, and restrains the FePt (001) orientation and perpendicular magnetic anisotropy (PMA). The effects become more pronounced for the 3-nm-thick FePt thin films. The effects can be mainly attributed to the different melting point and thermal expansion stress between the cap layer and FePt thin films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of Ag underlayer and Pt intermediate layers on the microstructure and magnetic properties of epitaxial FePt thin films

In this work, Ag underlayers, which have a slightly larger lattice parameter than FePt, were found not only to induce epitaxial growth of the FePt films but also to reduce the temperature at which the atomic ordering occurred. Without using the Ag underlayer, the FePt film deposited onto the hydrofluoric acid etched-Si substrate was FCC disordered. When Ag underlayers were used the FePt unit ce...

متن کامل

Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films

In this work Ag underlayers, with a slightly larger unit cell than FePt, were found not only to induce epitaxial growth of the FePt films but also to reduce the FePt ordering temperature. Without using the Ag underlayer, the FePt film deposited onto the Si substrate was fcc disordered. By the use of the Ag underlayer, it was observed that the FePt unit cells were expanded in the film plane. Thi...

متن کامل

Modulation of preferred orientation and easy axis of magnetic anisotropy in L10 FePt films with Cu buffer layers

The crystallographic orientation and easy axis of magnetic anisotropy in L10 FePt films were successfully modulated with Cu buffer layers. The FePt film directly grown on the Cr90Mo10 underlayer showed a (001) preferred orientation with out-of-plane magnetic anisotropy. As the Cu buffer layer thickness was z4 nm, the FePt films showed a (110) preferred orientation with in-plane magnetic anisotr...

متن کامل

Perpendicular Magnetization Behavior of Low- Temperature Ordered FePt Films with Insertion of Ag Nanolayers

FePt-Ag nanocomposite films with large perpendicular magnetic anisotropy have been fabricated by alternate-atomic-layer electron beam evaporation onto MgO(100) substrates at the low temperature of 300 °C. Their magnetization behavior and microstructure have been studied. The surface topography was observed and varied from continuous to nanogranular microstructures with insertion of Ag nanolayer...

متن کامل

Effect of Magnetic Field on Surface Morphology and Magnetic Properties of FeCu/Cu Nano layers Prepared by Electrodeposition Technique: Investigation of Magneto-hydrodynamic Effect

In this paper, the effect of magnetic field on the morphology, structure and magnetic properties of electrodeposited FeCu/Cu thin films was investigated. The films were deposited on Au2PdAg/glass substrates using electrodeposition technique in potentiostatic control. The magnetic fields of 5000 and 7000 Oe were applied on deposition bath during deposition. Two series of thin films were prepared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015